International Research journal of Management Science and Technology

  ISSN 2250 - 1959 (online) ISSN 2348 - 9367 (Print) New DOI : 10.32804/IRJMST

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 114    Submit Your Rating     Cite This   Download        Certificate

NOVEL METABOLITES OF PSEUDOMONAS: A NEW AVENUE OF PLANT HEALTH MANAGEMENT

    2 Author(s):  NOUSHAD P. , KULDEEP K.

Vol -  4, Issue- 3 ,         Page(s) : 361 - 374  (2013 ) DOI : https://doi.org/10.32804/IRJMST

Abstract

Biotic threat in the form of insect pests is a major cause for yield loss in agricultural systems and an important factor affecting the structure and productivity of crop plant communities. However, bacteria antagonistic to plant pathogens and harmful insects are known to reduce plant contagion. These bacteria have been extensively studied in agricultural systems where they significantly contribute to soil suppressiveness, which is the natural potential of soils to inhibit plant pathogens. The genus Pseudomonas has been reported extensively not only for preventing infectious diseases but also promoting plant growth. Many Pseudomonas spp. have been reported for the presence of genes that responsible to construct and produce an array of imperative metabolites such as Indole Acetic Acid (IAA), 2-4 Di-Acetyl Phluoroglucinol (DAPG), HCN, Phenazines, Lipodepsipeptide, Pyrrolnitrin, Pyoverdin (Pvd) and Pyochelin etc. for such two fold and significant tasks.

order online online

  1. Angayarkanni T, Kamalakannan A, Santhini E, Predeepa D. Identification of biochemical  markers for the selection of  Pseudomonas  fluorescens  against  Pythium  spp. In: Asian conference on Emerging Trends in Plant-Microbial Interactions. University of Madras, Chennai.  2005; p.295-303.
  2. Arima K, Imanaki H, Kousaka M, Fukuda A, Tamura G. Studies on pyrrolnitrin a new antibiotic. I. Isolation and properties of pyrrolnitrin. J. Antibiot. 1965; A18:201-204.
  3. Arima K, Imanaki H, Kousaka M, Fukuta A, Tamura G. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem. 1964; 28:575-576.
  4. Bakker P A H M, Pieterse C M J, van Loon L C. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 2007; 97:239–243.
  5. Bjornlund L, Ronn R, Pechy-Tarr M, Maurhofer M, Keel C, Nybroe O. Functional GacS in Pseudomonas DSS73 prevents digestion by Caenorhabditis elegans and protects the nematode from killer flagellates. ISME J. 2009; 3:770-779.
  6. Blaha D, Prigent-Combaret C, Mirza M S, Moenne-Loccoz Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase encoding gene acdS in phyto beneficial and pathogenic Proteobacteriaand relation with strain biogeography. FEMS Microbiol Ecol. 2006; 56: 455–470.
  7. Bull C T, Weller D M, Thomashow L S. In situ measure¬ment of root respiration and soluble C-concentrations in the rhizosphere. Soil Biol Biochem. 1993; 25:1189-96.
  8. Byng G, Eustice D C, Jensen R A. Biosynthesis of Phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa. Journal of bacteriology 1979; 13:884-86.
  9. de Mesel I, Derycke S, Moens T, Van Der Gucht K, Vincx M, Swings J. Top-down impact of bacterivorous nematodes onthe bacterial community structure: a microcosm study. Environ Microbiol. 2004; 6:733-744.
  10. Diby P, Saju K., Jisha P J, Sharma Y R, Kumar A, Anandraj M. Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L). Ann. Micro. 2005; 55:129-133.
  11. Dikin A, Sijam K, Kadir J, Seman I A. Mode of Action of Antimicrobial Substances from Burkholderia multivorans and Microbacterium testaceum  against  Schizophyllum commune Fr.  Int J Agri Biol. 2007; 9:311-314.
  12. Elander R P, Mabe J A, Hamill R L, Gorman M. Biosynthesis of pyrrolnitrins by analogue-resistant mutants of Pseudomonas fluorescens. Folia Microbiologica 1971; 16:56-165.
  13. Frias J E, Flores E, Herrero A. Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol. 1994; 14:823-32.
  14. Girlanda M, Perotto S, Moenne-Loccoz Y, Bergero R, Lazzari A, Defago G, Bonfante P, Luppi AM: Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol. 2001; 67:1851-1864.
  15. Glick B R. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett. 2005; 25:1–7.
  16. Groboillot A, Portet-Koltalo F, Derf F, Feuilloley M J G, Orange, Poc C D. Novel Application of Cyclolipopeptide Amphisin: Feasibility Study as Additive to Remediate Polycyclic Aromatic Hydrocarbon (PAH) Contaminated Sediments. Int J Mol  Sci. 2011; 12:1787-1806.
  17. Haas D, Defago G. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat Rev Microbiol. 2005; 3:307–319.
  18. Hagins J M, Locy R, Silo-Suh L. Isocitrate Lyase Supplies Precursors for Hydrogen Cyanide Production in a Cystic Fibrosis Isolate of Pseudomonas aeruginosa. J Bacteriol. 2009; 191:6335-6339.
  19. Imanaka H, Kousaka M, Tamura G, Arima K. Studies on pyrrolnitrin, a new antibiotic. III Structure of pyrrolnitrin. J Antibiot. 1965; A18:207-210
  20. Jousset A, Scheu S, Bonkowski M. Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indige-nous bacteria. Funct Ecol. 2008; 22:714-7194.
  21. Kamilova F, Validov S, Azarova T, Mulders I, Lugten-berg B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol. 2005; 7:1809–1817.
  22. Kaur R, Kaur J, Singh R S, Alabouvette C. Biological control of Fusarium oxysporum f. sp. ciceri by non-pathogenic Fusarium and fluorescent Pseudomonas. Int J Bot. 2007; 3: 114-117.
  23. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U,Wirthner P, Haas D, Defago G. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant Microbe Interact. 1992; 5:4-13.
  24. Kiely P D, Haynes J M, Higgins C H, Franks A, Mark G L, Morrissey J P, O’Gara F. Exploiting new systems-based strategies to elucidate plant-bacterial interac-tions in the rhizosphere. Microb Ecol 2006; 51:257–266.
  25. Kumar B S D. Disease suppression and crop improvement through fluorescent Pseudomonads isolated from cultivated soils. World J Microb  Biot. 1998; 14:735-741.
  26. Lalaouna D, Fochesato S, Sanchez L, Schmitt-Kopplin P, Haas D, Heulin T, Achouak W. Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA dependent Rsm small RNAs. Appl Environ Microbiol. 2012; 78(6):1658-65.
  27. Lemanceau P, Bakker PAHM, de Kogel W J, Alabouvette C, Schippers B. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppres-sion of fusarium wilt of carnation by nonpathogenic Fusarium oxysporum Fo 47. Appl Environ Microbio. 1992; l58:2978–2982.
  28. Leon M, Yaryura P  M,  Montecchia M S, Hernandez A I, Correa O S,  Pucheu N L, Kerber N L, Garcia A F. Antifungal Activity of Selected Indigenous Pseudomonas and Bacillus from the Soybean Rhizosphere. I J M R. 2009; 10:1-9.
  29. Lim H S, Kim Y S, Kim S D. Pseudomonas stutzeri YPL-1 Genetic Transformation and Antifungal Mechanism against Fusarium solani, an Agent of Plant Root Rot. App Environ Microb. 1991; 0:510-516.
  30. Mahesh M, Saifulla M, Sreenivasa S, Shashidhar K R. Integrated Management of Pigeon pea wilt caused by Fusarium udum butler. E J B S. 2010; 2:1-7.
  31. Maketon C, Fortuna A. M, Okubara P A. Cultivar-dependent transcript accumulation in wheat roots colonized by Pseudomonas fluorescens Q8r1-96 wild type and mutant strains. BioControl .2012; 60:216–224.
  32. McKellar R C. Role of nutrient limitation in the com-petition between Pseudomonas fluorescens and Escherichia coli O157:H7. J Food Protect 2007; 70:1739–1743.
  33. Mette N N, Jan S. Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol. 1999; 30:217-227.
  34. Mulet M, Lalucat J, García-Valdes E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol. 2010; 12:1513–1530.
  35. Nandakumar R, Babu S, Raguchander T, Samiyappan R. Chitinolytic Activity of Native Pseudomonas fluorescens Strains. J Agric Sci Technol. 2007; 9:61-68. 
  36.  Nashwa M A, Sallam K A M, Abo-Elyousr, Hassan M A E. Evaluation of Trichoderma Species as Biocontrol Agents for Damping-Off and Wilt Diseases of Phaseolus vulgaris L. and Efficacy of Suggested Formula. Egypt J Phytopatho. 2008; 36(1-2):81-93.
  37. Natsch A, Keel C, Hebecker N, Laasik E, De fago G. Impact of Pseudomonas fluorescens strain CHA0 and a derivative with improved biocontrol activity on culturable resident bacterial community on cucumber roots. FEMS Microbiol  Ecol. 1998; 27:365-380.
  38. Neidig N, Paul R J, Scheu S, Jousset A. Secondary Metabolites of Pseudomonas fluorescens CHA0 Drive Complex Non-Trophic Interactions with Bacterivorous Nematodes. Microb Ecol. 2011; 61:853–859.
  39. Notz R. Biotic Factors Affecting Expression of the 2,4 Diacetylphloroglucinol Biosynthesis Gene phlA in Pseudomonas fluorescens Biocontrol Strain CHAO in the Rhizosphere. Phytopathology . 2001; 91:873-881.
  40. Olalemi A S, Arotupin D J. Effect of refined petroleum products contamination on bacterial population and physicochemical characteristics of cultivated agricultural soil. J Microbiol  Biotech Food Sci. 2012; 2 (2) 684-700.
  41. Pedersen A, Nybroe O, Winding A, Ekelund F, Bjornlund L. Bacterial feeders, the nematode Caenorhabditis elegans and the flagellate Cercomonas longicauda, have different effects on outcome of competition among the Pseudomonas biocontrol strains CHA0 and DSS73. Microb Ecol. 2009; 57:501-509.
  42. Pieterse C M J, van Pelt J A, Verhagen B W M, Ton J, van Wees S C M, Leon-Kloosterziel K M, van Loon L C. Induced systemic resistance by plant growth promoting rhizobacteria. Symbiosis. 2003; 35:39–54.
  43. Poritsanos N, Selin C, Fernando W G D, Nakkeeran S, de Kievit T R. A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Can J Microbiol 2006; 52, 1177–1188.
  44. Raaijmakers J M, Weller D M. Natural Plant Protection by 2,4 Diacetylphloroglucinol– Producing Pseudomonas spp. in Take-All Decline Soils. Molecular Plant-Microbe Interactions 1998;11:144–152.
  45. Ramarathnam R, Fernando W G D, de Kievit T. The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens, in controlling black leg disease of canola. BioControl. 2011; 56:225–235.
  46. Reddy B P, Reddy M S, Kumar K V. Characterization of antifungal metabolites of Pseudomonas fluorescens and their effect on mycelial growth of Magnaporthe grisea and Rhizoctonia solani. International Journal of PharmTech Research. 2009; 1:1490-1493.
  47. Rezzonico F, Zala M, Keel C, Duffy B, Moenne-Loccoz Y, Defago G. Is the ability of biocontrol fluorescent Pseudomonads to produce the antifungal metabolite 2, 4-diacetylphloroglucinol really synonymous with higher plant protection New Phytol. 2007; 173:861–872.
  48. Roberts D P, Short N M J, Maloney A P, Nelson E B, Schaff D A. Role of colonization in biocontrol: studies with Enterobacter cloacae. Plant Sci.1994; 101:83¬89.
  49. Ronn R, Grunert J, Ekelund F. Protozoan response toaddition of the bacteria Mycobacterium chlorophenolicum and Pseudomonas chlororaphis to soil microorganisms. Biol Fertil Soils. 2001; 33:126-131.
  50. Rosenberg K, Bertaux J, Scheu S, Bonkowski M. Soilamoeba rapidly change bacterial community composition in Arabidopsis thaliana rhizosphere. ISME J. 2009; 3:675-684.
  51. Rudresh D L, Shivaprakash M K, Prasad R D. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Applied Soil Ecology. 2004; 28:139-146.
  52. Schippers B, Bakker A W, Bakker P A H M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect on cropping practices. Annu. Rev. Phytopathol. 1987; 25:339-58.
  53. Sharma N, Sharma K P, Gaur R K, Gupta V K. Role of chitinase in plant defense. Asian J. Biochem. 2011;6: 29-37.
  54. Siddiqui I A, Shaukat S S, Sheikh I H, Khan A. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. W J Microb Biotech. 2006; 22:641-650.
  55. Wang C, Knill E, Glick B R, Defago G. Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol. 2000; 46:1–10.
  56. Wang S L, Chang W T. Purification and Characterization of two Bifunctional Chitinases/Lysozymes Extracellularly Produced by Pseudomonas aeruginosa K-187 in a Shrimp. Appl Environ Microb. 1997; 63:380–386.
  57. Weller DM. Pseudomonas biocontrol agents of soil-borne pathogens: looking back over 30 years. Phytopathol .2007; 97:250–256.
  58. Yamamoto S, Kasai H, Arnold D L, Jackson R W, Vivian A. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology (Reading, England) 2000;146:2385–2394.

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details