International Research journal of Management Science and Technology

  ISSN 2250 - 1959 (online) ISSN 2348 - 9367 (Print) New DOI : 10.32804/IRJMST

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 200    Submit Your Rating     Cite This   Download        Certificate

EFFECT OF ELEVATED [CO2] ON FOLIAR DEFENSE CHEMISTRY OF TRITICUM AESTIVUM AND INCIDENCE FOLIAR DISEASES

    3 Author(s):  YOGESH YADAV,S.D SINGH,RUPAM KAPOOR

Vol -  5, Issue- 4 ,         Page(s) : 69 - 85  (2014 ) DOI : https://doi.org/10.32804/IRJMST

Abstract

Atmospheric CO2 concentrations are predicted to double within the next century. Despite this trend, the extent and mechanisms through which elevated [CO2] affect plant diseases remain uncertain. Triticum aestivum (var. PBW 343) plants were exposed to two different CO2 concentrations (390/550 ppm) in free-air CO2 enrichment technology (FACE). Survey of Triticum aestivum for natural disease incidence revealed that elevated [CO2] increased yellow rust incidence. To assess the mechanisms underlying these changes, we conducted leaf structural,

order online online

  1. Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372.
  2. Barnes, J.D., Percy, K.E., Paul, N.D., Jones, P., Mclaughlin, C.K., Mullineaux,  P.M., Creissen, G., Wellburn, A.R., 1996. The influence of UV-B radiation on the physicochemical nature of 
  3. tobacco  (Nicotiana tabaccum L.) leaf surface. J. Exp. Bot. 47, 99–10.

  4. Bettarini, I., Vaccari, F.P., Miglietta, F., 1998. Elevated CO2 concentrations and stomatal density: Observations from 17 plant species growing in a CO2 spring in central Italy. Global Change Biol. 4, 17–22.
  5. Boomiraj, K., Chakrabarti, B., Aggarwal, P.K., Choudhary, R., Chander, S., 2010. Impact of climate change on Indian mustard (Brasssica juncea) in contrasting agro-environments of the tropics ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture 106-109.
  6. Bray, H.G., Thorpe, W.V., 1954. Analysis of phenolic compounds of interest in metabolism. Meth. Biochem. Anal. 1, 27-52.
  7. Bradford, M.M., 1976. A rapid and sensitive method for quantification of microgram quantities of protein using the principle of protein dye binding. Anal. Biochem. 72, 248–259.
  8. Chakraborty, S., Tiedemann, A.V., Teng, P.S., 2000. Climate change: potential impact on plant diseases. Environ. Pollut. 108, 317–326.
  9. Chakraborty, S., 2005.  Potential impact of climate change on plant–pathogen interactions. Aust. Plant Path. 34, 443–448.
  10. Chakraborty, S.,  Luck, J.,  Hollaway, G.,  Freeman, A.,  Norton, R.,  Garrett, K.A.,  Percy, K.,  Hopkins, A., Davis, C.,  Karnosky, D.F.,  2008. Impacts of Global Change on Diseases of Agricultural Crops and Forest Trees. CAB Reviews: Perspectives in Agric. Vet. Sci. Nutri. Nat. Res. 3, 1-15.
  11. Conn, K. L., Tewari, J. P., Hadzlyev, D., 1984. The role of epicuticular wax in canola in resistance to Alternaria brassicae. Phytopathology 74, 851.
  12. Creasy, L.L., Zucker, M., Wong, P.P., 1974. Anomalous effects of cycloheximide on phenylalanine ammonia-lyase: role of synthesis and inactivation in leaf disks of Helianthus annuus. Phytochemistry 13, 2117-2124.
  13. Dunn, D.C., Duncan, L.W., Romeo, J.T., 1998. Changes in arginine, PAL activity and nematode behavior in salinity stressed citrus. Phytochemistry 49, 413-417.

  14. Eastburn, D.M., DeGennaro, M.M., DeLucia, E.H., Dermody, O., McElrone, A.J., 2010. Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biol. 16, 320–330.
  15. Eastburn, D. M., McElrone, A. J.,  Bilgin, D. D., 2011. Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathol. 60, 54–69.
  16. Garrett, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N., Travers, S.E., 2006. Climate change effects on plant disease: genomes to ecosystems. Ann. Rev.  Phytopathol. 44, 489–509.
  17. Gleadow, R.M., Foley, W.J., Woodrow, I.E., 1998. Enhanced CO2 alters the relationship between photosynthesis and defense in cyanogenic Eucalyptus cladocalyx. Plant Cell Environ. 21, 12–22.
  18. Hamilton, J.G., Zangerl, A.R., DeLucia, E.H., Berenbaum, M.R., 2001. The carbon-nutrient balance hypothesis: its rise and fall. Ecology Letters. 4, 86–95.
  19. Intergovernmental Panel on Climate Change, 2007. Summary for policymakers. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Mayer, L.A. (Eds.), Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  20. Karnovsky, M.J.A., 1965. Formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27, 137-138.
  21. Kobayashi, T., Ishiguro, K., Nakajima, T., Kim, H.Y., Okada, M., Kobayashi. K., 2006. Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology.  96, 425–431.
  22. Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55, 591–628.
  23. Manning, W.J., Tiedemann, A.V., 1995. Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ. Pollut. 88,  219 –245.

  24. Matros, A., Amme, S., Kettig, B., Buck-Sorlin, G.H., Sonnewald, U., Mock. H.P., 2006. Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with Potato virus Y. Plant Cell Environ. 29, 126–137.
  25. McElrone, A.J., Reid, C.D., Hoye, K.A., Hart, E., Jackson, R.B., 2005. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biol. 11, 1828–1836.
  26. Miglietta, F., Lanini, M., Bindi, M., Magliulo, V., 1997. Free air CO2 enrichment of potato (Solanum tuberosum L.): design and performance of the CO2-fumigation system. Global Change Biol. 3, 417–427.
  27. Plessl, M., Elstner, E.F., Rennenberg, H., Habermeyer, J., Heiser, I., 2007. Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants. Environ. Exp. Bot. 60, 447-457.
  28. Reddy, G. V. P., Tossavainen, P., Nerg, A., Holopainen, J.K., 2004.  Elevated Atmospheric CO2 affects the Chemical Quality of Brassica Plants and the Growth Rate of the Specialist, Plutella
  29. xylostella, but Not the Generalist, Spodoptera littoralis. J. Agric. Food Chem. 52, 4185-4191.
  30. Royer, D.L., 2001. Stomatal density and stomatal index as indicators of palaeoatmospheric CO2 concentration. Rev. Palaeobotany and Palynology 114, 1-28.
  31. Wheeler, B.E.J., 1969.  An Introduction to Plant Diseases, John Wiley and Sons, Ltd., London, p. 301.
  32. Williams, R. S., Norby, R. J., Lincoln, D. E., 2000. Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Global Change Biol. 6, 685-695.
  33. Yemm. E.W., Willis. A.J., 1954. The Estimation of Carbohydrates in Plant Extracts by Anthrone.  Biochem. J. 57, 508-514.

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details