International Research journal of Management Science and Technology

  ISSN 2250 - 1959 (online) ISSN 2348 - 9367 (Print) New DOI : 10.32804/IRJMST

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 102    Submit Your Rating     Cite This   Download        Certificate

DIELECTRIC BEHAVIOUR OF FERRITE MATERIALS

    3 Author(s):  SANDEEP S. APAKE , MS PRASHANTH, INFILLS KHAN

Vol -  7, Issue- 5 ,         Page(s) : 121 - 124  (2016 ) DOI : https://doi.org/10.32804/IRJMST

Abstract

In this manner it is apparent that there is part of degree for planning Mn-Zn ferrite nanoparticles utilizing new and creative strategies. The wet synthetic strategy for readiness conquers the disadvantages of ordinary fired methods.The wet substance technique for planning nanomaterials wherein metal salts like nitrates, carbonates, sulfates and so on are utilized, is at times repetitive and tedious procedure. It is accounted for that there are different procedure of getting ready nanoferrites, yet the techniques are not basic and are hard proportional up. Along these lines, it was felt to go for another strategy for planning of ultrafine MnZn ferrite material which is financially savvy, basic and yield exceptionally homogeneous nanocrystalline Mn-Zn ferrite materials at a lower response temperature. The mechano-substance autocombustion technique for union of MnZn ferrites utilizing metal oxides as beginning materials created has been 51 portrayed and talked about in the following section. This strategy is creative, recently developed and found to give great quality fine particles (nano size) ferrites.

1. A. Verma, T.C. Goel, R.G. Mendiratta and R.G. Gupta, J. Magn. Magn. Mater, 192(1999)271.
2. A.V. Tadeev, G. Delabouglise, and M. Labeau, Thin Solid Films 337, 163(2003).
3. B.K. Bammannavar, L.R. Naik and R.B. Pujar, Progress in Electromagnetic Research Letter, 4 (2008)
4. D. H. Kim, J. S. Yang, K. W. Lee, S. D. Bu, T. W. Nob, S. J. Oh, Y. W. Kim, J. (1993)
5. K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films 102, 1 (1983).
6. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000).
7. P. A. Stampe, R. J. Kennedy, Y. Xin, J. S. Parker, J. Appl. Phys. 92, 7114 (2002). . S. A. Chambers, S. Thevuthasan, R. F. C. Farrow, R. F. Marks, J. U. Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L. Ederer, and U. Diebold, Appl. Phys. Lett. 79, 3467 (2001).
8. S. Chung, H. Tanaka, H. Y. Lee and T. Kawai, Appl. Phys. Lett. 81, 2421 (2002).
9. S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2003).
10. W. Prellier, A. Fouchet and B. Mercey, J. Phys. Condens. Matter 15, RI583 (2003).

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details