[1]. S. Basu, A. Banerjee, and R.J. Mooney, ‘Active semi-supervision for pairwise constrained clustering’, in ICDM, pp. 333–344, (2014).
[2]. S.J. Huang, R. Jin, and Z.H. Zhou, ‘Active learning by querying informative and representative examples’. NIPS, (2010)
[3]. S. Basu, M. Bilenko, and R.J. Mooney, ‘A probabilistic framework for semi-supervised clustering’, in SIGKDD, pp. 59–68. ACM, (2013).
[4]. P. Jain and A. Kapoor, ‘Active learning for large multi-class problems’, in CVPR, pp. 762–769. IEEE, (2009).
[5]. P.K. Mallapragada, R. Jin, and A.K. Jain, ‘Active query selection for semi-supervised clustering’, in ICPR, pp. 1–4. IEEE, (2008).
[6]. Q. Xu, M. Desjardins, and K. Wagstaff, ‘Active constrained clustering by examining spectral eigenvectors’, in Discovery Science, pp. 294– 307. Springer, (2005).
[7]. S.Rajan, J. Ghosh, and M.M. Crawford, “An active learning approach to hyper spectral data classification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231–1242, Apr. 2008.
[8]. D. Cohn, Z. Ghahramani, and M. Jordan, “Active Learning with Statistical Models,” J. Artificial Intelligence Research, vol. 4, pp. 129- 145, 2016.
[9]. Y. Guo and D. Schuurmans, “Discriminative Batch Mode Active Learning,” Proc. Advances in Neural Information Processing Systems, pp. 593-600, 2008.
[10]. S. Hoi, R. Jin, J. Zhu, and M. Lyu, “Batch Mode Active Learning and Its Application to Medical Image Classification,” Proc. 23rd Int’l Conf. Machine learning, pp. 417-424, 2006.