International Research journal of Management Science and Technology

  ISSN 2250 - 1959 (online) ISSN 2348 - 9367 (Print) New DOI : 10.32804/IRJMST

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 289    Submit Your Rating     Cite This   Download        Certificate

FE2O3 NANOPARTICLES EMBEDDED ECO-FRIENDLY 2D CARBON NANOCOMPOSITE FOR EFFICIENT REMOVAL OF PB(II) IONS IN WATER MEDIUM

    2 Author(s):  SHAIK KAUSARJAN, DR.BHAGWAN RAM PANDEY

Vol -  9, Issue- 2 ,         Page(s) : 276 - 291  (2018 ) DOI : https://doi.org/10.32804/IRJMST

Abstract

Water is the source of life and one of the most precious natural resources. Nevertheless, with the fast development of industry, water containing heavy metal ions has become a global environmental threat because of their toxicity and biological accumulation. Thus, we have synthesized a facile 2D-carbon sheet, which is an inexpensive and eco-friendly adsorbent over the synthetic adsorbents. The neem leaves derived 2D-carbon was impregnated with Fe2O3 nanoparticles. The Fe2O3@2D-CS composite was characterized by using XRD, FT-IR, TEM, BET and TGA analysis. This Fe2O3@2D-CS composite was applied for the removal of Pb(II) from aqueous solution. The batch adsorption experiment data was well fitted to Langmuir isotherm model rather than Freundlich model, the adsorption capacity was reached up to 43.47 mg/g at 303 K. The adsorption kinetics study shows that the adsorption of Pb(II) ions equilibrium was achieved within 60 min following a pseudo-second-order model. The Fe2O3 nanoparticles doped 2D-CS can act as an excellent adsorbent for the removal of Pb(II) from the aqueous environment. This study illustrates that Fe2O3@2D-CS nanocomposite can be used for practical applications as a global economic material.

  1. Behnam, A.;Karyn, J.; Peter, M.Plasma Polymer-Functionalized Silica Particles for Heavy Metals Removal.ACS Appl. Mater. Interfaces 2015, 7, 4265 - 4274.
  2. Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental Remediation and Application of Nanoscale Zero Valent Iron and Its Composites for the Removal of Heavy Metal Ions. Environ. Sci. Technol.2016, 50, 7290−7304.
  3. Papanikolaou, N. C.; Hatzidaki, E. G.; Belivanis, S.; Tzanakakis, G. N.; Tsatsakis, A. M.  Lead Toxicity Update. A Brief Review. Med. Sci. Monit.2005, 11, 329–336.
  4. Li, F. C.; Hai, W. L.; Yang, L.; Chun H. C.;Shu, H. Y.Synthesis of an AttapulgiteClay@Carbon Nanocomposite Adsorbent by a Hydrothermal Carbonization Process and Their Application in the Removal of Toxic Metal Ions from Water. Langmuir 2011, 27, 8998 - 9004.
  5. Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Schwikowski, M. Pb Pollution from Leaded Gasoline in South America in the Context of a 2000-Year Metallurgical History. Sci. Adv.2015, 1, 1–8.
  6. Guidelines for Drinking-Water Quality, Geneva: World Health Organization2008.
  7. Yin, N.; Wang, K.; Wang, L.; Li, Z. Amino-Functionalized MOFs Combining Ceramic Membrane Ultrafiltration for Pb (II) removal. Chem. Eng. J.2016, 306, 619–628.
  8. Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Irreversible Precipitation of Mercury and Lead. J. Hazard. Mater.2001, 84, 73–82.
  9. Liu, P.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D. Separation and Recovery of Heavy Metal Ions and Salt Ions from Wastewater by 3D Graphene-Based Asymmetric Electrodes via Capacitive Deionization. J. Mater. Chem. A2017, 5, 14748–14757.
  10. Ma, L.; Wang, Q.; Islam, S. M.; Liu, Y.; Ma, S.; Kanatzidis, M. G. Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS42− Ion. J. Am. Chem. Soc.2016, 138, 2858−2866.
  11. Wang, N.; Xu, X.; Li, H.; Wang, Q.; Yuan, L.; Yu, H. High Performance and Prospective Application of Xanthate-Modified Thiourea Chitosan Sponge-Combined Pseudomonas Putida and TalaromycesAmestolkiae Biomass for Pb(II) Removal from Wastewater. Bioresource Technol.2017, 233, 58–66.
  12. Lotfi, M.; Nafaa, A.Tartrazine modified activated carbon for the removalof Pb(II), Cd(II) and Cr(III).J. Hazard. Mater.2009, 161, 263 - 269. 
  13. Thuy, C.N.; Paripurnanda, L.; Tien, V. N.; Saravanamuthu, V.; Jaya, K.; Ravi, N.Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. ChemEng J.2015,270,393 - 404.
  14. Youning, C.; Maofang, H.; Chaozhan, W.; Yinmao, W.A novel polyvinyltetrazole-grafted resin with high capacity for adsorption of Pb(II), Cu(II) and Cr(III) ions from aqueous solutions.J. Mater. Chem. A. 2014, 2, 10444 -10453. 
  15. Manoj, K.S.; Sandip, M.; Saswati, S. D.; Pranati, B.; Raj, K. P.Removal of Pb(II) from aqueous solution by acid activated red mud.J Environ Chem Eng. 2013,1, 1315 – 1324.
  16. Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad Family of Carbon     Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds,and Combined Superstructures. Chem. Rev. 2015, 115, 4744−4822.
  17. Lam, E.; Luong, J. H.T. Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catal. 2014, 4, 3393−3410.
  18. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The Role of Graphene for Electrochemical Energy Storage. Nat. Mater. 2015, 14, 271−279.
  19. Trifonov, A.; Herkendell, K.; Vered, R. T.; Yehezkeli, O.; Woerner, M.; Willner, I. Enzyme-Capped Relay-Functionalized Mesoporous Carbon Nanoparticles: Effective Bioelectrocatalytic Matrices for Sensing and Biofuel Cell Applications. ACS Nano 2013, 7, 11358−11368.
  20. Park, J.; Kim, B.; Han, J.; Oh, J.; Park, S.; Ryu, S.; Jung, S.; Shin, J. Y.; Lee, B. S.; Hong, B. H.; Choi, D.; Kim, B. S. Graphene Oxide Flakes as a Cellular Adhesive: Prevention of Reactive Oxygen Species Mediated Death of Implanted Cells for Cardiac Repair. ACS Nano, 2015, 9, 4987−4999.
  21. Li, L.; Lin, R. B.; Krishna, R.; Wang, X.; Li, B.; Wu, H.; Li, J.; Zhou, W.; Chen, B. Flexible–Robust Metal–Organic Framework for Efficient Removal of Propyne from Propylene. J. Am. Chem. Soc.2017, 139, 7733−7736.
  22. Mandakini Biswal, Abhik Banerjee, Meenal Deo and Satishchandra Ogale, From dead leaves to high energy density supercapacitors, Energy Environ. Sci., 2013, 6, 1249–1259.
  23. Sada Venkateswarlu, Daeho Lee, and Minyoung Yoon, Bioinspired 2D-Carbon Flakes and Fe3O4 Nanoparticles Composite for Arsenite Removal, ACS Appl. Mater. Interfaces 2016, 8, 23876−23885.
  24. Venkateswarlu, S.; Yoon, M. Core-Shell Ferromagnetic Nanorod Based on Amine Polymer Composite (Fe3O4@DAPF) for Fast Removal of Pb(II) from Aqueous Solutions. ACS Appl. Mater. Interfaces 2015, 7, 25362−25372.
  25. S. Venkateswarlu, M. Yoon, RSC Adv., 2015, 5, 65444–65453.
  26. Lagergren, S., 1898. Zur  theorie  der  sogenannten  adsorption  gelˆster  stoffe,  Kungliga  Svenska Vetenskapsakademiens Seven Vetenskapsakad. Handlinger 24, 1 - 39.
  27. Ho, Y.S., Mckay, G., 1999. Pseudo-second order model for sorption processes. Process   Biochem. 34, 451- 465.
  28. Crini, G., Peindy, H. N., Gimbert, F., Robert, C., 2007. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based     adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 53, 97 – 110.
  29. S. Venkateswarlu, M. Yoon, Dalton Trans., 2015, 44, 18427–18437.
  30. Nassar, N. N. Rapid Removal and Recovery of Pb(II) from Wastewater by Magnetic Nanoadsorbents. J. Hazard. Mater. 2010, 184, 538−546.
  31. Peng, X.; Xu, F.; Zhang, W.; Wang, J.; Zeng, C.; Niu, M.; Chmielewska, E. Magnetic Fe3O4@Silica−Xanthan Gum Composites for Aqueous Removal and Recovery of Pb2+. Colloids Surf., A 2014, 443, 27−36.
  32. Sekar, M.; Sakthi, V.; Rengaraj, S. Kinetics and Equilibrium Adsorption Study of Lead(II) onto Activated Carbon Prepared from Coconut Shell. J. Colloid Interface Sci. 2004, 279, 307−313.
  33. Gedam, A. H.; Dongre, R. S. Adsorption Characterization of Pb(II) Ions onto Iodate Doped Chitosan Composite: Equilibrium and Kinetic Studies. RSC Adv. 2015, 5, 54188−54201.
  34. Sada Venkateswarlu, Bhajanthri Natesh Kumar, Bobbala Prathima, Yakkate SubbaRao, Nimmagadda Venkata Vijaya Jyothi, Arabian Journal of Chemistry, doi.org/10.1016/j.arabjc.2014.09.006

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details