International Research journal of Management Science and Technology

  ISSN 2250 - 1959 (online) ISSN 2348 - 9367 (Print) New DOI : 10.32804/IRJMST

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 235    Submit Your Rating     Cite This   Download        Certificate

ZRO2 NANOPARTICLES DOPED BIOGENIC 2DCARBON NANOCOMPOSITE FOR ENHANCED REMOVAL OF CU(II) IONS

    2 Author(s):  SHAIK KAUSARJAN, DR.BHAGWAN RAM PANDEY

Vol -  8, Issue- 12 ,         Page(s) : 355 - 370  (2017 ) DOI : https://doi.org/10.32804/IRJMST

Abstract

Water containing heavy metal ions from mineral, mining processing, synthetic chemical, and automobile manufacturing industries are one of the biggest water pollution. Therefore, we synthesized a facile eco-friendly 2D-carbon sheet, which is an inexpensive adsorbent over the inherently more costly synthetic adsorbents. The onion husk derived 2D-carbon was impregnated with ZrO2 nanoparticles. The ZrO2@2D-CS composite was characterized by using XRD, FT-IR, TEM, BET and TGA analysis. This ZrO2@2D-CS composite was applied for the removal of Cu(II) from aqueous solution. The batch adsorption experiment data was well fitted to Langmuir isotherm model rather than Freundlich model, the adsorption capacity was reached up to 44.84 mg/g at 308 K. The adsorption kinetics study shows that the adsorption of Cu(II) ions equilibrium was achieved within 60 min following a pseudo-second-order model. The ZrO2 nanoparticles doped 2D-CS can act an excellent adsorbent for removal of Cu (II) from the aqueous environment. This study illustrates that ZrO2@2D-CS composite can be used for practical applications as a global economic material.

1. H. Dieter, Drinking Water Toxicology in Its Regulatory Framework A2, 1st ed., in: P. Wilderer (Ed.), Treatise on Water Science, vol. 3, Publisher: Elsevier Ltd., Academic Press, 2011, pp. 377–416 Chapter: 3.14.
2. Sajeda A. Al-Saydeh, Muftah H. El-Naas, Syed J. Zaidi, Copper removal from industrial wastewater: A comprehensive review, http://dx.doi.org/10.1016/j.jiec.2017.07.026.
3. A. Asfaram, M. Ghaedi, A. Goudarzi, M. Rajabi, Dalton Trans. 44 (2015) 14707.
4. Sani Abdulrazak, K. HussainiH. M. Sani, Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit, Applied Water Science, 2017, 7, 3151-3155.
5. Y.M. Hao, M. Chen, Z.B. Hu, Effective removal of Cu (II) ions from aqueous solution
a. by amino-functionalized magnetic nanoparticles, J. Hazard. Mater. 184 (2010) 392–399.
6. Huimin Hu, Xuewei Li, Pengwu Huang, Qiwu Zhang, Wenyi Yuan, Efficient removal of copper from wastewater by using mechanically activated calcium carbonate, Journal of Environmental Management 203 (2017) 1-7.
7. Hossein A.Z., Abdolhossein N.M.,Galeh A.and Somayeh S., Optimization of solid-phase extraction based on a new sol-gel material using a response surface methodology for the determination of copper in water samples by flame atomic absorption spectrometry. Intern. J. Environ. Anal. Chem., 2013, 93, 279-297.
8. Awual, M.R., Ismael, M., Yaita, T., El-Safty, S.A., Shiwaku, H., Okamoto, Y., Suzuki, S., 2013. Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem. Eng. J. 222, 67-76.
9. Ofomaja, A.E., 2010. Equilibrium studies of copper ion adsorption onto palm kernel
a. fibre. J. Environ. Manag. 91, 1491-1499.
10. E.A. Dil, M. Ghaedi, A. Asfaram, S. Hajati, F. Mehrabi, A. Goudarzi, Ultrason. Sonochem. 34 (2017) 677.
11. H. Aydin, Y. Bulut, C. Yerlikaya, J. Environ. Manage. 87 (2008) 37.
12. E. Eren, J. Hazard. Mater. 159 (2008) 235.
13. E. Nassef, Y.A. El-Taweel, J. Chem. Eng. Process Technol. 6 (2015) 214.
14. S. Yang, X. Ren, G. Zhao, W. Shi, G. Montavon, B. Grambow, X. Wang, Geochim.
a. Cosmochim. Acta 166 (2015) 129.
15. J.S. Espana, E.L. Pamo, E.S. Pastor, J.R. Andres, J.A.M. Rubi, The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Aquat. Geochem. 12 (2006) 269–298.
16. M.G. da Fonseca, M.M. de Oliveora, L.N.H. Arakaki, J.G.P. Espinola, C. Airoldi, Natural vermiculite as an exchanger support for heavy cations in aqueous solution, J. Colloid Interface Sci. 285 (2005) 50–55.
17. O. Arous, A. Gherrou, H. Kerdjoudj, Removal of Ag(I), Cu(II) and Zn(II) ions with a supported liquid membrane containing cryptands as carriers, Desalination 161 (2004) 295–303.
18. U.B. Ogutveren, S. Koparal, E. Ozel, Electrodialysis for the removal of copper ions from wastewater, J. Environ. Sci. Health A 32 (1997) 749–761.
19. S.H. Hasan, P. Srivastava, Batch and continuous biosorption of Cu2+ by immobilized biomass of Arthrobacter sp, J. Environ. Manage. 90 (2009) 3313–3321.
20. Y. Sag, Y. Aktay, Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus, Biochem. Eng. J. 12 (2002) 143–153.
21. J.C. Zheng, H.M. Feng, M.H.W. Lam, P.K.S. Lam, Y.W. Ding, H.Q. Yu, Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material, J. Hazard. Mater. 171 (2009) 780–785.
22. S. Andrejkovicova, A. Sudagar, J. Rocha, C. Patinha, W. Hajjaji, E.F. da Silva, A.
a. Velosa, F. Rocha, Appl. Clay Sci. 126 (2016) 141.
23. X. Wang, S. Yu, J. Jin, H. Wang, N.S. Alharbi, A. Alsaedi, T. Hayat, X. Wang, Sci.
a. Bull. 61 (2016) 1583.
24. M. Matouq, N. Jildeh, M. Qtaishat, M. Hindiyeh, M.Q. Al Syouf, J. Environ.
a. Chem. Eng. 3 (2015) 775.
25. K.A. Northcott, K. Miyakawa, S. Oshima, Y. Komatsu, J.M. Perera, G.W. Stevens,
a. The adsorption of divalent metal cations on mesoporous silicate MCM-41,
b. Chem. Eng. J. 157 (2010) 25–28.
26. S.H. Hasan, P. Srivastava, Batch and continuous biosorption of Cu2 by immobilized
a. biomass of Arthrobacter sp, J. Environ. Manage. 90 (2009) 3313–3321.
27. Aran, D., Antelo, J., Fiol, S. & Macias, F. Influence of feedstock on the copper removal capacity of waste-derived biochars. Bioresour. Technol. 212, 199–206 (2016).
28. Phoebe Zito Raya and Heather J. Shipley, Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review, RSC Adv., 2015, 5, 29885–29907.
29. Gregorio, R. M. P.; Falcon, M. S. G.; Gandara, J. S.; Rodrigues, A. S.; Almeida, D. P. F. Identification and Quantification of Flavonoids in Traditional Cultivars of Red and White Onions at Harvest. J. Food Compos. Anal. 2010, 23, 592-598.
30. Benitez, V.; Molla, E.; Cabrejas, M. A. M.; Aguilera, Y.; Andreu, F. J. L.; Cools, K.; Terry, L. A.; Esteban, R. M. Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Diber and Bioactive Compounds. Plant Foods Hum. Nutr. 2011, 66, 48-57.
31. Sada Venkateswarlu, Daeho Lee, and Minyoung Yoon, Bioinspired 2D-Carbon Flakes and Fe3O4 Nanoparticles Composite for Arsenite Removal, ACS Appl. Mater. Interfaces 2016, 8, 23876-23885.
32. K. Gurushantha, K. S. Anantharaju, L. Renuka, S. C. Sharma, H. P. Nagaswarupa, S. C. Prashantha, Y. S. Vidya and H. Nagabhushana, New green synthesized reduced graphene oxide ZrO2 composite as high performance photocatalyst under sunlight, RSC Adv., 2017, 7, 12690–12703.
33. Castro,  R. S. D., Caetano, L., Ferreira, G., Padilha, P. M., Saeki, M. J., Zara,  L. F., Martines,  M. A.U., Castro, G. R., 2011. Banana Peel Applied to the Solid Phase Extraction of Copper and Lead from River Water: Preconcentration of Metal Ions with a Fruit Waste. Ind.Eng.Chem.Res. 50, 3446 - 3451.
34. R. A. K. Rao, S. Ikram, Desalination 277 (2011) 390.
35. Lagergren, S., 1898. Zur  theorie  der  sogenannten  adsorption  gelˆster  stoffe,  Kungliga  Svenska Vetenskapsakademiens Seven Vetenskapsakad. Handlinger 24, 1 - 39.
36. Ho, Y.S., Mckay, G., 1999. Pseudo-second order model for sorption processes. Process   Biochem. 34, 451- 465.
37. Crini, G., Peindy, H. N., Gimbert, F., Robert, C., 2007. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based     adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 53, 97 – 110.
38. S. Venkateswarlu, M. Yoon, RSC Adv., 2015, 5, 65444–65453.
39. Shi Lan, Xiaomin Wu, Linlin Li, Mengmeng Li, Fengying Guo, Shucai Gan, Synthesis and characterization of hyaluronic acid-supported magnetic microspheres for copper ions removal, Colloids and Surfaces A: Physicochem. Eng. Aspects 425 (2013) 42– 50.
40. Hao Yong-Mei, Chen Man, Hu Zhong-Bo, Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater. 184 (2010) 392–399.
41. S.S. Banerjee, D.H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent, J. Hazard. Mater. 147 (2007) 792–799.
42. S.M. Zhu, N. Yang, D. Zhang, Poly(N,N-dimethylaminoethyl methacrylate) modification
a. of activated carbon for copper ions removal, Mater. Chem. Phys. 113 (2009) 784–789.
43. S.R. Shukla, V.G. Gaikar, R.S. Pai, U.S. Suryavanshi, Batch and column adsorption of Cu(II) on unmodified and oxidized coir, Sep. Sci. Technol. 44 (2009) 40–62.

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details