International Research journal of Management Science and Technology

  ISSN 2250 - 1959 (online) ISSN 2348 - 9367 (Print) New DOI : 10.32804/IRJMST

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 368    Submit Your Rating     Cite This   Download        Certificate

EFFECT OF NITROGEN SUPPLEMENTATION ON BIOMASS PRODUCTIVITY AND BIOCHEMICAL COMPOSITION IN MICROALGAE CONSORTIUM

    1 Author(s):  VIJAYA K. JHA

Vol -  9, Issue- 8 ,         Page(s) : 36 - 52  (2018 ) DOI : https://doi.org/10.32804/IRJMST

Abstract

Energy security is the most challenging task of 21st century. But this task needs to get addressed dynamically. There is a need of systematic investigation on potential sources of bio energy and enhancing their yield using scientific methods. This study aims at understanding the effect of Nitrogen supplementation on growth and biomass productivity of microalgae. The effect of Nitrogen supplementation on chlorophyll-a, lipid and carbohydrate content in microalgae consortium has been observed. The effect of two different nutrient media on biomass composition of microalgae consortium at optimized urea concentration has also been observed for 21 days in control, BG-11 and BBM media. The results indicate that at 0.1% Urea treatment the BBM media favours the micro-algal growth compared to the BG-11 media. But, in absence of Urea, the BG-11 media favours growth over BBM media at later stages. Highest value of Chlorophyll-a concentration was reported in T1 (0.1% Urea) followed by Control and T2 (0.5% Urea) on 21st day of cultures.

  1. Agarwal, A. K. (2007). Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in energy and combustion science, 33(3), 233-271.
  2. Agwa, O. K., & Abu, G. O. (2016). Influence of Various Nitrogen Sources on Biomass and Lipid Production by Chlorella vulgaris. British Biotechnology Journal, 15(2), 1-13.
  3. Akansu, S. O., Dulger, Z., Kahraman, N., &Veziroglu, T. N. (2004).Internal combustion engines fueled by natural gas—hydrogen mixtures. International journal of hydrogen energy, 29(14), 1527-1539.
  4. Alam, F., Mobin, S., & Chowdhury, H. (2015).Third generation biofuel from algae. Procedia Engineering, 105: 763-768.
  5. Banse, M., van Meijl, H., &Woltjer, G. (2008, June). The impact of first and second generation biofuels on global agricultural production, trade and land use.In GTAP Conference Paper, June.
  6. Becker, EW. (1994). Microalgae biotechnology and microbiology. Cambridge University Press, New York, pp 18
  7. Bhuiya, M. M. K., Rasul, M. G., Khan, M. M. K., Ashwath, N., Azad, A. K., &Hazrat, M. A. (2014). Second generation biodiesel: potential alternative to-edible oil-derived biodiesel. Energy Procedia, 61, 1969-1972.
  8. Bindra, S., Sharma, R., Khan, A., & Kulshrestha, S. (2017). Renewable energy Sources in different Generations of Bio-fuels with special Emphasis on Microalgae Derived Biodiesel as Sustainable industrial fuel Model. Biosciences Biotechnology Research Asia, 14(1), 259-274.
  9. Blinová, L., Bartošová, A., &Gerulová, K. (2015).Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 23(36), 87-95.
  10. Borowitzka, M. A., & Moheimani, N. R. (2013).Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change, 18(1): 13-25.
  11. Brennan, L, Owende P. Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews.2010; 14: 557-577.
  12. Chen, Y. H., & Walker, T. H. (2011).Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnology letters, 33(10), 1973.
  13. Chong, W. T., Naghavi, M. S., Poh, S. C., Mahlia, T. M. I., & Pan, K. C. (2011). Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application. Applied Energy, 88(11), 4067-4077.
  14. Dhup, S., Kannan, D. C., &Dhawan, V. (2016). Understanding Urea Assimilation and its Effect on Lipid Production and Fatty Acid Composition of Scenedesmus Sp.
  15. Dittmar, M. (2012). Nuclear energy: Status and future limitations. Energy, 37(1), 35-40.
  16. Dragone, G., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2010).Third generation biofuels from microalgae. Current research, technology and education topics in applied microbiology and microbial biotechnology, 2, 1355-1366.
  17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
  18. Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fuels: First to fourth generation. Renewable energy, 69, 114-122.
  19. Gao, Y., Gregor, C., Liang, Y., Tang, D., & Tweed, C. (2012). Algae biodiesel-a feasibility report. Chemistry Central Journal, 6(1), S1.
  20. Gullison, R. E., Frumhoff, P. C., Canadell, J. G., Field, C. B., Nepstad, D.C., Hayhoe, K., Avissar, R. A., Curran, L. M., Fried¬lingstein, P., Jones, C. D., and Nobre, C., Environment. Tropical forests and climate policy.Science.2007, 316: 985-986.
  21. Hamed, S. M., &Klöck, G. (2014). Improvement of medium composition and utilization of mixotrophic cultivation for green and blue green microalgae towards biodiesel production. Advances in Microbiology, 4(03), 167.
  22. Hamed, S. M., &Klöck, G. (2014).Improvement of medium composition and utilization of mixotrophic cultivation for green and blue green microalgae towards biodiesel production. Advances in Microbiology, 4(03), 167.
  23. Hamedi, S., Mahdavi, M. A., & Gheshlaghi, R. (2016). Improved lipid and biomass productivities in Chlorella vulgaris by differing the inoculation medium from the production medium. Biofuel Research Journal, 3(2), 410-416.
  24. Hempel, N., Petrick, I., &Behrendt, F. (2012). Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. Journal of applied phycology, 24(6), 1407-1418.
  25. Henrard, A. A., da Rosa, G. M., Moraes, L., de Morais, M. G., & Costa, J. A. V. (2015). The cultivation of microalgae Cyanobium sp. and Chlorella sp. in different culture media and stirring setting. African Journal of Microbiology Research, 9(21), 1431-1439.
  26. Huang, D., Zhou, H., & Lin, L. (2012). Biodiesel: an alternative to conventional fuel. Energy Procedia, 16, 1874-1885.
  27. Idenyi, J. N. Ebenyi L. N., Ogah, O. Nwali, B.U. and Ogbanshi, M.E.(2016). Effect of Different Growth Media on the Cell Densities of Freshwater Microalgae Isolates.(2016). IOSR Journal of Pharmacy and Biological Sciences.11(3): 24-28.
  28. Kajikawa, Y., & Takeda, Y. (2008). Structure of research on biomass and bio-fuels: A citation-based approach. Technological Forecasting and Social Change, 75(9), 1349-1359.
  29. Kaur,R.,Mahajan,A.,Bhatia,A.,Mahavidyalaya,M.R.H,&Jalandhar.(2017). Effect of Two Different Nitrogen Sources on Lipid Accumulation in Microalgae Chlorella Pyrenoidosa.International Journal of Trend in Research and Development.5(4): 2394-9333.
  30. Keeling, C. D. (1973).Industrial production of carbon dioxide from fossil fuels and limestone. Tellus, 25(2), 174-198.
  31. Kim, G., Mujtaba, G. & Lee, K. (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production, Algae, 31(3), 257-266 http://dx.doi.org/10.4490/algae.2016.31.8.18
  32. Kirrolia, A., Bishnoi, N. R., & Singh, N. (2011). Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. Journal of Algal Biomass Utilization, 2(4), 28-34.
  33. Li, T., Zheng, Y., Yu, L. & Chen, S. (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol, 131, 60–67.
  34. Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology progress, 24(4), 815-820.
  35. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232.
  36. Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources.
  37. Progress in energy and combustion science, 37(1), 52-6.
  38. Norici, A., Dalsass, A. & Giordano, M. (2002). Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen  regimes. Physiol Plant, 116, 186–191.
  39. Pandey, R. and Kumar, G. (2017). A Comprehensive Review on Generations of Biofuels: Current Trends, Development and Scope.International Journal on Emerging Technologies.8(1): 561-565.
  40. Park, J., Jeong, H. J., Yoon, E. Y., &  Moon, S. J. (2016). Easy and rapid quantification of lipid contents ofmarine dinoflagellates using the sulpho-phospho-vanillin method. Algae, 31(4), 391-401.
  41. Phukan, M. M., Chutia, R. S., Konwar, B. K., &Kataki, R. (2011). Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88(10), 3307-3312.
  42. Porra, R. J., Thompson, W. A., &Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BiochimicaetBiophysicaActa (BBA)-Bioenergetics, 975(3), 384-394.
  43. Radway, J. C., Wilde, E. W., Whitaker, M. J., &Weissman, J. C. (2001). Screening of algal strains for metal removal capabilities. Journal of Applied Phycology, 13(5), 451-455.
  44. Rodolfi, L., ChiniZittelli, G., Bassi. N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M. R.,( 2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. BiotechnolBioeng., 102: 100-112.
  45. Rushdy, (2016). Effect of copper on growth, bioactive metabolites, antioxidant enzymes and photosynthesis-related gene transcription in Chlorella vulgaris.
  46. Saifullah, A. Z. A., Karim, M. A., & Ahmad-Yazid, A. (2014). Microalgae: an alternative source of renewable energy. Am. J. Eng. Res, 3(3): 330-338.
  47. Sameera, V., Sameera, C., & Ravi Teja, Y. (2011). Current strategies involved in biofuel production from plants and algae. J Microbial BiochemTechnol, 1, 002.
  48. Shaker, S., Morowvat, M. H., &Ghasemi, Y. (2017). Effects of Sulfur, Iron and Manganese Starvation on Growth, ß-carotene Production and Lipid Profile of Dunaliellasalina. Journal of Young Pharmacists, 9(1).
  49. Sharma, A. K., Sahoo, P. K., Singhal, S., & Patel, A. (2016). Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech, 6(2), 116.
  50. Sibi, G., Anuraag, T. S., &Bafila, G. (2014).Copper stress on cellular contents and fatty acid profiles in Chlorella species. Online Journal of Biological Sciences, 14(3): 209.
  51. Sims, R. E., Rogner, H. H., & Gregory, K. (2003). Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy policy, 31(13), 1315-1326.
  52. Singh, A. K., & Singh, M. P. (2014).Importance of algae as a potential source of biofuel. Cell. Mol. Biol, 60(5), 106-109.
  53. Viesturs, D., & Melece, L. (2014). Advantages and disadvantages of biofuels: observations in Latvia. In Engineering for rural development: Conference proceedings(Vol. 13, pp. 210-215).
  54. Yeh, K. L., & Chang, J. S. (2012).Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.Bioresource technology, 105, 120-127.
  55. Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Effects of different nitrogen and
  56. phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of
  57. a freshwater microalga Scenedesmus sp. Bioresource technology, 101(14), 5494- 5500.

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details