International Research journal of Management Science and Technology

  ISSN 2250 - 1959 (online) ISSN 2348 - 9367 (Print) New DOI : 10.32804/IRJMST

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 75    Submit Your Rating     Cite This   Download        Certificate

IMPERVIOUS SURFACE QUANTIFICATION IN YAMUNA FLOOD PLAIN OF DELHI USING ARTIFICIAL INTELLIGENCE, OBJECT BASED IMAGE ANALYSIS AND STATISTICAL CLASSIFICATION FROM MULTI-SENSOR DATA

    2 Author(s):  MANOJ PANT, SAUMITRA MUKHERJEE

Vol -  8, Issue- 6 ,         Page(s) : 43 - 54  (2017 ) DOI : https://doi.org/10.32804/IRJMST

Abstract

To understand the impact of anthropogenic activities it is important to conduct a detailed estimate of land cover change. A multi-decadal study using temporal datasets from Landsat, IRS supported by high resolution Quickbird images and ground truthing were conducted to detect change specially in the built classes. A temporal coverage land cover change of River Yamuna Flood plain between 1980 till 2015 with a focus to mapchange in Impervious surfaces was conducted. Image classification using Artificial Neural Network, Object based image analysis and traditional statistical classifier was conducted and compared. All classifier used produced good result, however, ANN produced most accurate classification (K = 0.85) compared to OBIA (K=0.81) and MLC (K= 0.79) was marginally behind.

  1. Arora, M. K., & Foody, G. M. (1997). Log-linear modelling for the evaluation of the variables affecting the accuracy of probabilistic, fuzzy and neural network classifications. International Journal of Remote Sensing, 18(4), 785-798.
  2. Atkinson, P. M., &Tatnall, A. R. L. (1997). Introduction neural networks in remote sensing. International Journal of remote sensing, 18(4), 699-709.
  3. Beale, R., & Jackson, T. (1990). Neural Computing-an introduction. CRC Press.
  4. Bendiktsson, J. A., &Sveinsson, J. R. (1997). Multisource data classification and feature extraction with neural networks. International Journal of Remote Sensing, 18(4), 727-40.
  5. Benediktsson, J. A., Swain, P. H., &Ersoy, O. K. (1990). Neural network approaches versus statistical methods in classification of multisource remote sensing data.
  6. Bernard, A. C., Wilkinson, G. G., &Kanellopoulos, I. (1997). Training strategies for neural network soft classification of remotely-sensed imagery. International Journal of Remote Sensing, 18(8), 1851-1856.
  7. Bischof, H., Schneider, W., &Pinz, A. J. (1992). Multispectral classification of Landsat-images using neural networks. IEEE transactions on Geoscience and Remote Sensing, 30(3), 482-490.
  8. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press.
  9. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1), 2-16.
  10. Civco, D. L., & Hurd, J. D. (1997, April). Impervious surface mapping for the state of Connecticut. In Proceedings of the 1997 ASPRS Annual Conference (pp. 124-135).
  11. Foody, G. M. (1995). Land cover classification by an artificial neural network with ancillary information. International Journal of Geographical Information Systems, 9(5), 527-542.
  12. Foody, G. M. (1995). Using prior knowledge in artificial neural network classification with a minimal training set. Remote Sensing, 16(2), 301-312.
  13. Foody, G. M., & Arora, M. K. (1997). An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 18(4), 799-810.
  14. Gong, B., Im, J., &Mountrakis, G. (2011). An artificial immune network approach to multi-sensor land use/land cover classification. Remote Sensing of Environment, 115(2), 600-614.
  15. Heermann, P. D., &Khazenie, N. (1992). Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Transactions on Geoscience and Remote Sensing, 30(1), 81-88.
  16. Im, J., Lu, Z., Rhee, J., & Quackenbush, L. J. (2012). Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sensing of Environment, 117, 102-113.
  17. Kanellopoulos, I., & Wilkinson, G. G. (1997). Strategies and best practice for neural network image classification. International Journal of Remote Sensing, 18(4), 711-725.
  18. Kavzoglu, T., & Mather, P. M. (2003). The use of backpropagating artificial neural networks in land cover classification. International journal of remote sensing, 24(23), 4907-4938.
  19. Kohonen, T. (1988). An introduction to neural computing. Neural networks, 1(1), 3-16.
  20. Kumar, P., Prasad, R., Mishra, V. N., Gupta, D. K., Choudhary, A., & Srivastava, P. K. (2015, December). Artificial neural network with different learning parameters for crop classification using multispectral datasets. In Microwave, Optical and Communication Engineering (ICMOCE), 2015 International Conference on (pp. 204-207). IEEE.
  21. Lippmann, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine, 4(2), 4-22.
  22. Moody, A., & Woodcock, C. E. (1996). Calibration-based models for correction of area estimates derived from coarse resolution land-cover data. Remote Sensing of Environment, 58(3), 225-241.
  23. Moody, A., Gopal, S., & Strahler, A. H. (1996). Artificial neural network response to mixed pixels in coarse-resolution satellite data. Remote Sensing of Environment, 58(3), 329-343.
  24. Mukherjee  S.,  Sashtri  S.,  Gupta  M.,  Pant  M.K.,  Singh  C.K.,  Singh  S.K., Srivastava P.K., Sharma K.K (2007).  Integrated water resource management using remote sensing and geophysical techniques:  Aravali quartzite, Delhi, India.  Journal of Environmental Hydrology, volume 15, paper 10.
  25. Mukherjee S., Pant.M and Shashtri.S (2004).  Groundwater contamination by organic compounds.  Geophysical research Abstract, Voi.00599, 2004, European Geosciences Union Proc.2004.
  26. Mukherjee, S and Veer, V (2014). Water resource management in a part of Hindon basin, India using Artificial Neural Networking and image processing technique. International Journal of Innovation and Advancement in Computer Sciences.Volume 3 Issue 4 Pp 96-117
  27. Mukherjee, S with Islam T, Srivastava P.K., Gupta, M and Zhu,X. (2014).Computer Intelligence Technique in Earth and Environmental sciences, Springer. Published by Springer Verlag, USA. ISBN 978-94-017-8642-3
  28. Mukherjee, S., (1998).  Change in Groundwater environment with land-use pattern in a part of south Delhi:  A remote sensing approach.  Jour.  Asia-Pacific remote sensing and GIS journal Vol.9, No.2. pp 9-14. 
  29. Mukherjee, S., (1999).  Remote sensing Applications in Applied Geosciences.  Published by Manak Publications. New Delhi.
  30. Mukherjee, S., (2001).  Seismogenic potentiality of Delhi using remote sensing, Soil geochemistry and geophysical data, Indian Geological Congress Voi.2No.1 pp. 289-297.
  31. Mukherjee, S., 2004, A Text Book of environmental remote sensing. Macmillan India ltd.  ISBN 1403922357.
  32. Mukherjee,S.  Jaiswal R.K and Krishnamurthy.J (2005).  Regional study for mapping the natural resource prospect.  Geocarto International Journal Vol 20 No3 pp 1-11.
  33. Mukherjee’s., (2001).  Quantitative and qualitative improvement in groundwater by artificial recharge:  A case study in Jawaharlal Nehru University, New Delhi, India FACT & IRCSA Vienna MargrafVerlog ISBN 3-8236-1354-5.
  34. Murai, H., &Omatu, S. (1997). Remote sensing image analysis using a neural network and knowledge-based processing. International Journal of Remote Sensing, 18(4), 811-828.
  35. Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote sensing of environment, 86(4), 554-565.
  36. Pao, Y. (1989). Adaptive pattern recognition and neural networks.
  37. Paola, J. D., &Schowengerdt, R. A. (1995). A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and remote sensing, 33(4), 981-996.
  38. Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C., & Roberts, D. (2008). Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sensing of Environment, 112(5), 2272-2283.
  39. Serpico, S. B., &Roli, F. (1995). Classification of multisensor remote-sensing images by structured neural networks. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 562-578.
  40. Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., &Dech, S. (2012). Monitoring urbanization in mega cities from space. Remote sensing of Environment, 117, 162-176.
  41. Van Coillie, F. M. B., Verbeke, L. P. C., & De Wulf, R. R. (2004). Previously trained neural networks as ensemble members: knowledge extraction and transfer. International Journal of Remote Sensing, 25(21), 4843-4850.
  42. Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34-49.
  43. Woodcock, C. E., & Strahler, A. H. (1987). The factor of scale in remote sensing. Remote sensing of Environment, 21(3), 311-332.
  44. Wu, C. (2004). Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery. Remote Sensing of Environment, 93(4), 480-492.
  45. Xu, H. (2007). Extraction of urban built-up land features from Landsat imagery using a thematic oriented index combination technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381-1391.
  46. Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322-336.
  47. Yuan, Hui, Cynthia F. Van Der Wiele, and SiamakKhorram (2009) "An automated artificial neural network system for land use/land cover classification from Landsat TM imagery." Remote Sensing 1.3 (2009): 243-265.
  48. Zhang, Y., Zhang, H., & Lin, H. (2014). Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sensing of Environment, 141, 155-167.
  49. Zimmermann, E.W. (ed.) (1951). World Resources and industries, Harper and Brothers publication, New York.

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details